Feeds:
Posts
Comentários

Posts Tagged ‘ftp’

Papo de Botequim – Parte 1

Este blog contém um livro completo de Shell que escrevi para 12 fascículos da Linux Magazine.

julio-neves.jpg

Diálogo entreouvido entre um Linuxer e em empurrador de mouse:

– Quem é o Bash?

– O Bash é o filho mais novo da família Shell.

– Pô cara! Estás a fim de me deixar maluco? Eu tinha uma dúvida e você me deixa com duas!

– Não, maluco você já é há muito tempo. Desde que se decidiu a usar aquele sistema operacional que você tem que dar dez boots por dia e não tem domínio nenhum sobre o que esta acontecendo no seu computador. Mas deixa isso prá lá, vou te explicar o que é Shell e os componentes de sua família e ao final da explanação você dirá: “Meu Deus do Shell! Porque eu não optei pelo Linux antes?”.

O Ambiente Linux

Para você entender o que é e como funciona o Shell, primeiro vou te mostrar como funciona o ambiente em camadas do Linux. Dê uma olhada no gráfico abaixo:

Visão do shell em relação do Kernel do Linux Neste gráfico dá para ver que a camada de hardware é a mais profunda e é formada pelos componentes físicos do seu computador. Envolvendo esta, vem a camada do kernel que é o cerne do Linux, seu núcleo, e é quem bota o hardware para funcionar, fazendo seu gerenciamento e controle. Os programas e comandos que envolvem o kernel, dele se utilizam para realizar as tarefas aplicativas para que foram desenvolvidos. Fechando tudo isso vem o Shell que leva este nome porque em inglês, Shell significa concha, carapaça, isto é, fica entre o usuário e o sistema operacional, de forma que tudo que interage com o sistema operacional, tem que passar pelo seu crivo.

O Ambiente Shell

Bom já que para chegar ao núcleo do Linux, no seu kernel que é o que interessa a todo aplicativo, é necessária a filtragem do Shell, vamos entender como ele funciona de forma a tirar o máximo proveito das inúmeras facilidades que ele nos oferece.

O Linux por definição é um sistema multiusuário – não podemos nunca esquecer disto – e para permitir o acesso de determinados usuários e barrar a entrada de outros, existe um arquivo chamado /etc/passwd que além fornecer dados para esta função de “leão-de-chácara” do Linux, também provê informações para o login daqueles que passaram por esta primeira barreira. O último campo de seus registros informa ao sistema qual Shell a pessoa vai receber ao se “logar” (ARGH!!!).

Pinguim com placa de dica Quando eu disse que o último campo do /etc/passwd informa ao sistema qual é o Shell que o usuário vai receber ao se “logar”, é para ser interpretado ao pé-da-letra, isto é, se neste campo do seu registro estiver prog, a pessoa ao acessar o sistema receberá a tela de execução do programa prog e ao terminar a sua execução ganhará imediatamente um logout. Imagine o quanto se pode incrementar a segurança com este simples artifício.

Lembra que eu te falei de Shell, família, irmão? Pois é, vamos começar a entender isto: o Shell, que se vale da imagem de uma concha envolvendo o sistema operacional propriamente dito, é o nome genérico para tratar os filhos desta idéia que, ao longo dos anos de existência do sistema operacional Unix foram aparecendo. Atualmente existem diversos sabores de Shell, dentre estes eu destaco o sh (Bourne Shell), o ksh (Korn Shell), bash (Bourne Again Shell) e o csh (C Shell).

Uma Rapidinha nos Principais Sabores de Shell

Bourne Shell (sh)

Desenvolvido por Stephen Bourne da Bell Labs (da AT&T onde também foi desenvolvido o Unix), este foi durante muitos anos o Shell default do sistema operacional Unix. É também chamado de Standard Shell por ter sido durante vários anos o único e até hoje é o mais utilizado até porque ele foi portado para todos os ambientes Unix e distros Linux.

Korn Shell (ksh)

Desenvolvido por David Korn, também da Bell Labs, é um superset do sh, isto é, possui todas as facilidades do sh e a elas agregou muitas outras. A compatibilidade total com o sh vem trazendo muitos usuários e programadores de Shell para este ambiente.

Boune Again Shell (bash)

Este é o Shell mais moderno e cujo número de adeptos mais cresce em todo o mundo, seja por ser o Shell default do Linux, seu sistema operacional hospedeiro, seja por sua grande diversidade de comandos, que incorpora inclusive diversos instruções características do C Shell.

C Shell (csh)

Desenvolvido por Bill Joy da Berkley University é o Shell mais utilizado em ambientes *BSD e Xenix. A estruturação de seus comandos é bem similar à da linguagem C. Seu grande pecado foi ignorar a compatibilidade com o sh, partindo por um caminho próprio.

Além destes Shells existem outros, mas irei falar contigo somente sobre os três primeiros, tratando-os genericamente por Shell e assinalando as especificidades de cada um que porventura hajam.

Explicando o funcionamento do Shell

O Shell é o primeiro programa que você ganha ao se “logar” no Linux. É ele que vai resolver um monte de coisas de forma a não onerar o kernel com tarefas repetitivas, aliviando-o para tratar assuntos mais nobres. Como cada usuário possui o seu próprio Shell interpondo-se entre ele e o Linux, é o Shell quem interpreta os comandos que são teclados e examina as suas sintaxes, passando-os esmiuçados para execução.

– Êpa! Esse negócio de interpreta comando não tem nada a haver com interpretador não, né?

– Tem sim, na verdade o Shell é um interpretador (ou será intérprete) que traz consigo uma poderosa linguagem com comandos de alto nível, que permite construção de loops (laços), de tomadas de decisão e de armazenamento de valores em variáveis, como vou te mostrar.

Vou te explicar as principais tarefas que o Shell cumpre, na sua ordem de execução. Preste atenção nesta ordem porque ela é fundamental para o entendimento do resto do nosso bate papo.

Exame da Linha de Comandos

Neste exame o Shell identifica os caracteres especiais (reservados) que têm significado para interpretação da linha, logo após verifica se a linha passada é uma atribuição ou um comando.

Atribuição

Se o Shell encontra dois campos separados por um sinal de igual (=) sem espaços em branco entre eles, identifica esta seqüência como uma atribuição.

Exemplos

$ ls linux
linux

Neste exemplo o Shell identificou o ls como um programa e o linux como um parâmetro passado para o programa ls.

$ valor=1000

Neste caso, por não haver espaços em branco (já dá para notar que o branco é um dos caracteres reservados) o Shell identificou uma atribuição e colocou 1000 na variável valor.

Pinguim com placa de dica Jamais Faça:

$ valor = 1000
bash: valor: not found

Neste caso, o Bash achou a palavra valor isolada por brancos e julgou que você estivesse mandando executar um programa chamado valor, para o qual estaria passando dois parâmetros: = e 1000.

Comando

Quando uma linha é digitada no prompt do Linux, ela é dividida em pedaços separados por espaço em branco: o primeiro pedaço é o nome do programa que terá sua existência pesquisada; identifica em seguida, nesta ordem, opções/parâmetros, redirecionamentos e variáveis.

Quando o programa identificado existe, o Shell verifica as permissões dos arquivos envolvidos (inclusive o próprio programa), dando um erro caso você não esteja credenciado a executar esta tarefa.

Resolução de Redirecionamentos

Após identificar os componentes da linha que você teclou, o Shell parte para a resolução de redirecionamentos. O Shell tem incorporado ao seu elenco de vantagens o que chamamos de redirecionamento, que pode ser de entrada (stdin), de saída (stdout) ou dos erros (stderr), conforme vou te explicar a seguir.

Substituição de Variáveis

Neste ponto, o Shell verifica se as eventuais variáveis (parâmetros começados por $), encontradas no escopo do comando, estão definidas e as substitui por seus valores atuais.

Substituição de Meta Caracteres

Se algum metacaractere (*, ? ou []) foi encontrado na linha de comando, neste ponto ele será substituído por seus possíveis valores. Supondo que o único arquivo no seu diretório corrente começado pela letra n seja um diretório chamado nomegrandeprachuchu, se você fizer:

$ cd n*

Como até aqui quem esta trabalhando a sua linha é o Shell e o comando (programa) cd ainda não foi executado, o Shell transforma o n* em nomegrandeprachuchu e o comando cd será executado com sucesso.

Passa Linha de Comando para o kernel

Completadas as tarefas anteriores, o Shell monta a linha de comandos, já com todas as substituições feitas, chama o kernel para executá-la em um novo Shell (Shell filho), ganhando um número de processo (PID ou Process IDentification) e permanece inativo, tirando uma soneca, durante a execução do programa. Uma vez encerrado este processo (juntamente com o Shell filho), recebe novamente o controle e, exibindo um prompt, mostra que está pronto para executar outros comandos.

Decifrando a Pedra da Roseta

Para tirar aquela sensação que você tem quando vê um script Shell, que mais parece uma sopa de letrinhas ou um hieróglifo vou lhe mostrar os principais caracteres especiais para que você saia por ai como o Jean-François Champollion decifrando a Pedra da Roseta (dê uma “googlada” para descobrir quem é este cara, acho que vale a pena).

Caracteres para remoção do significado

É isso mesmo, quando não desejamos que o Shell interprete um caractere especial, devemos “escondê-lo” dele. Isso pode ser feito de três formas distintas:

Apóstrofo ou plic (')

Quando o Shell vê uma cadeia de caracteres entre apóstrofos ('), ele tira os apóstrofos da cadeia e não interpreta seu conteúdo.

$ ls linux*
linuxmagazine
$ ls ‘linux*’
bash: linux* no such file or directory

No primeiro caso o Shell “expandiu” o asterisco e descobriu o arquivo linuxmagazine para listar. No segundo, os apóstrofos inibiram a interpretação do Shell e veio a resposta que não existe o arquivo linux*.

Contrabarra ou Barra Invertida ()

Idêntico aos apóstrofos exceto que a barra invertida inibe a interpretação somente do caractere que a segue.

Suponha que você acidentalmente tenha criado um arquivo chamado * (asterisco) – que alguns sabores de Unix permitem – e deseja removê-lo. Se você fizesse:

$ rm *

Você estaria fazendo a maior encrenca, pois o rm removeria todos os arquivos do diretório corrente. A melhor forma de fazer o pretendido é:

$ rm *

Desta forma, o Shell não interpretaria o asterisco, e em conseqüência não faria a sua expansão.

Faça a seguinte experiência científica:

$ cd /etc
$ echo ‘*’
$ echo *
$ echo *

Viu a diferença? Então não precisa explicar mais.

Aspas (")

Exatamente igual ao apóstrofo exceto que, se a cadeia entre aspas contiver um cifrão ($), uma crase (`), ou uma barra invertida (), estes caracteres serão interpretados pelo Shell.

Não precisa se estressar, eu não te dei exemplos do uso das aspas por que você ainda não conhece o cifrão ($) nem a crase (`). Daqui para frente veremos com muita constância o uso destes caracteres especiais, o mais importante é entender o significado de cada um.

Caracteres de redirecionamento

A maioria dos comandos tem uma entrada, uma saída e pode gerar erros. Esta entrada é chamada Entrada Padrão ou stdin e seu default é o teclado do terminal. Analogamente, a saída do comando é chamada Saída Padrão ou stdout e seu default é a tela do terminal. Para a tela também são enviadas por default as mensagens de erro oriundas do comando que neste caso é a chamada Saída de Erro Padrão ou stderr. Veremos agora como alterar este estado de coisas.

Vamos fazer um programa gago. Para isto faça:

$ cat

O cat é uma instrução que lista o conteúdo do arquivo especificado para a Saída Padrão (stdout). Caso a entrada não seja definida, ele espera os dados da stdin. Ora como eu não especifiquei a entrada, ele está esperando-a pelo teclado (Entrada Padrão) e como também não citei a saída, o que eu teclar irá para a tela (Saída Padrão) fazendo desta forma, como eu havia proposto um programa gago. Experimente!

Redirecionamento da Saída Padrão

Para especificarmos a saída de um programa usamos o > (maior que) ou o >> (maior, maior) seguido do nome do arquivo para o qual se deseja mandar a saída.

Vamos transformar o programa gago em um editor de textos (que pretensão heim!). smile

$ cat > Arq

O cat continua sem ter a entrada especificada, portanto está aguardando que os dados sejam teclados, porém a sua saída está sendo desviada para o arquivo Arq. Assim sendo, tudo que esta sendo teclado esta indo para dentro de Arq, de forma que fizemos o editor de textos mais curto e ruim do planeta.

Se eu fizer novamente:

$ cat > Arq

Os dados contidos em Arq serão perdidos, já que antes do redirecionamento o Shell criará um Arq vazio. Para colocar mais informações no final do arquivo eu deveria ter feito:

$ cat >> Arq
Pinguim com placa de atenção Como já havia lhe dito, o Shell resolve a linha e depois manda o comando para a execução. Assim, se você redirecionar a saída de um arquivo para ele próprio, primeiramente o Shell “esvazia” este arquivo e depois manda o comando para execução, desta forma você acabou de perder o conteúdo do seu querido arquivo.

Com isso dá para notar que o >> (maior maior) serve para inserir texto no final do arquivo.

Redirecionamento da Saída de Erro Padrão

Assim como o default do Shell é receber os dados do teclado e mandar as saídas para a tela, os erros também serão enviados para a tela se você não especificar para onde deverão ser enviados. Para redirecionar os erros use 2> SaidaDeErro. Note que entre o número 2 e o sinal de maior (>) não existe espaço em branco.

Pinguim com placa de atenção Preste atenção! Não confunda >> com 2>. O primeiro anexa dados ao final de um arquivo, e o segundo redireciona a Saída de Erro Padrão (stderr) para um arquivo que está sendo designado. Isso é importante!

Suponha que durante a execução de um script você pode, ou não (dependendo do rumo tomado pela execução do programa), ter criado um arquivo chamado /tmp/seraqueexiste$$. Para não ficar sujeira no seu disco, ao final do script você colocaria uma linha:

$ rm /tmp/seraqueexiste$$

Caso o arquivo não existisse seria enviado para a tela uma mensagem de erro. Para que isso não aconteça deve-se fazer:

$ rm /tmp/seraqueexiste$$ 2> /dev/null

Sobre o exemplo que acabamos de ver tenho duas dicas a dar:

Pinguim com placa de dica Dica # 1 O $$ contém o PID, isto é, o número do seu processo. Como o Linux é multiusuário, é bom anexar sempre o $$ ao nome dos dos arquivos que serão usados por várias pessoas para não haver problema de propriedade, isto é, caso você batizasse o seu arquivo simplesmente como seraqueexiste, o primeiro que o usasse (criando-o então) seria o seu dono e todos os outros ganhariam um erro quando tentassem gravar algo nele.

Para que você teste a Saída de Erro Padrão direto no prompt do seu Shell, vou dar mais um exemplo. Faça:

$ ls naoexiste
bash: naoexiste no such file or directory
$ ls naoexiste 2> arquivodeerros
$
$ cat arquivodeerros
bash: naoexiste no such file or directory

Neste exemplo, vimos que quando fizemos um ls em naoexiste, ganhamos uma mensagem de erro. Após, redirecionarmos a Saída de Erro Padrão para arquivodeerros e executarmos o mesmo comando, recebemos somente o prompt na tela. Quando listamos o conteúdo do arquivo para o qual foi redirecionada a Saída de Erro Padrão, vimos que a mensagem de erro tinha sido armazenada nele. Faça este teste ai.

Pinguim com placa de dica Dica # 2 – Quem é esse tal de /dev/null?- Em Unix existe um arquivo fantasma. Chama-se /dev/null. Tudo que é mandado para este arquivo some. Assemelha-se a um Buraco Negro. No caso do exemplo, como não me interessava guardar a possível mensagem de erro oriunda do comando rm, redirecionei-a para este arquivo.

É interessante notar que estes caracteres de redirecionamento são cumulativos, isto é, se no exemplo anterior fizéssemos:

$ ls naoexiste 2>> arquivodeerros

a mensagem de erro oriunda do ls seria anexada ao final de arquivodeerros.

Redirecionamento da Entrada Padrão

Para fazermos o redirecionamento da Entrada Padrão usamos o < (menor que).

– E prá que serve isso? – você vai me perguntar.

– Deixa eu te dar um exemplo que você vai entender rapidinho.

Suponha que você queira mandar um mail para o seu chefe. Para o chefe nós caprichamos, né? então ao invés de sair redigindo o mail direto no prompt da tela de forma a tornar impossível a correção de uma frase anterior onde, sem querer, escreveu um “nós vai”, você edita um arquivo com o conteúdo da mensagem e após umas quinze verificações sem constatar nenhum erro, decide enviá-lo e para tal faz:

$ mail chefe < arquivocommailparaochefe

O teu chefe então receberá o conteúdo do arquivocommailparaochefe.

Here Document

Um outro tipo de redirecionamento muito louco que o Shell te permite é o chamado here document. Ele é representado por << (menor menor) e serve para indicar ao Shell que o escopo de um comando começa na linha seguinte e termina quando encontra uma linha cujo conteúdo seja unicamente o label que segue o sinal <<.

Veja o fragmento de script a seguir, com uma rotina de ftp:

    ftp -ivn hostremoto << fimftp
        user $Usuário $Senha
        binary
        get arquivoremoto
    fimftp

Neste pedacinho de programa temos um monte de detalhes interessantes:

  1. As opções que usei para o ftp (-ivn) servem para ele ir listando tudo que está acontecendo (—v de verbose), para não perguntar se você tem certeza de que deseja transmitir cada arquivo (—i de interactive), e finalmente a opção —n serve para dizer ao ftp para ele não solicitar o usuário e sua senha, pois esses serão informados pela instrução específica (user);
  2. Quando eu usei o << fimftp, estava dizendo o seguinte para o intérprete:
    – Olhe aqui Shell, não se meta em nada a partir daqui até encontrar o label fimftp. Você não entenderia nada, já que são instruções específicas do comando ftp e você não entende nada de ftp.
    Se fosse só isso seria simples, mas pelo próprio exemplo dá para ver que existem duas variáveis ($Usuário e $Senha), que o Shell vai resolver antes do redirecionamento. Mas a grande vantagem desse tipo de construção é que ela permite que comandos também sejam interpretados dentro do escopo do here document, o que também contraria o que acabei de dizer. Logo a seguir explico como esse negócio funciona. Agora ainda não dá, está faltando ferramenta.
  3. O comando user é do repertório de instruções do ftp e serve para passar o usuário e a senha que haviam sido lidos em uma rotina anterior a esse fragmento de código e colocados respectivamente nas duas variáveis: $Usuário e $Senha.
  4. O binary é outra instrução do ftp, que serve para indicar que a transferência de arquivoremoto será feita em modo binário, isto é, o conteúdo do arquivo não será interpretado para saber se está em ASCII, EBCDIC, …
  5. O get arquivoremoto diz ao ftp para pegar esse arquivo em hostremoto e trazê-lo para o nosso host local. Se fosse para mandar o arquivo, usaríamos o comando put.
Pinguim com placa de atenção Um erro muito freqüente no uso de labels (como o fimftp do exemplo anterior) é causado pela presença de espaços em branco antes ou após o mesmo. Fique muito atento quanto a isso, por que este tipo de erro costuma dar uma boa surra no programador, até que seja detectado. Lembre-se: um label que se preze tem que ter uma linha inteira só para ele.

– Está bem, está bem! Eu sei que dei uma viajada e entrei pelos comandos do ftp, fugindo ao nosso assunto que é Shell, mas como é sempre bom aprender e é raro as pessoas estarem disponíveis para ensinar…

Redirecionamento de Comandos

Os redirecionamentos que falamos até aqui sempre se referiam a arquivos, isto é mandavam para arquivo, recebiam de arquivo, simulavam arquivo local, … O que veremos a partir de agora redireciona a saída de um comando para a entrada de outro. É utilíssimo e quebra os maiores galhos. Seu nome é pipe (que em inglês significa tubo, já que ele encana a saída de um comando para a entrada de outro) e sua representação é uma barra vertical (|).

$ ls | wc -l
21

O comando ls passou a lista de arquivos para o comando wc, que quando está com a opção –l conta a quantidade de linha que recebeu. Desta forma, podemos afirmar categoricamente que no meu diretório existiam 21 arquivos.

$ cat /etc/passwd |sort | lp

Esta linha de comandos manda a listagem do arquivo /etc/passwd para a entrada do comando sort. Este a classifica e manda-a para o lp que é o gerenciador do spool de impressão.

Caracteres de Ambiente

Quando quer priorizar uma expressão você coloca-a entre parênteses não é? Pois é, por causa da aritmética é normal pensarmos deste jeito. Mas em Shell o que prioriza mesmo são as crases (`) e não os parênteses. Vou dar exemplos de uso das crases para você entender melhor.

Eu quero saber quantos usuários estão “logados” no computador que eu administro. Eu posso fazer:

$ who | wc -l
8

O comando who passa a lista de usuários conectados para o comando wc –l que conta quantas linhas recebeu e lista a resposta na tela. Pois bem, mas ao invés de ter um oito solto na tela, o que eu quero é que ele esteja no meio de uma frase.

Ora para mandar frases para a tela eu uso o comando echo, então vamos ver como é que fica:

$ echo “Existem who | wc -l usuários conectados”
Existem who | wc -l usuários conectados

Hi! Olha só, não funcionou! É mesmo, não funcionou e não foi por causa das aspas que eu coloquei, mas sim por que eu teria que ter executado o who | wc -l antes do echo. Para resolver este problema, tenho que priorizar esta segunda parte do comando com o uso de crases, fazendo assim:

$ echo “Existem `who | wc -l` usuários conectados”
Existem 8 usuários conectados

Para eliminar esse monte de brancos antes do 8 que o wc -l produziu, basta tirar as aspas. Assim:

$ echo Existem `who | wc -l` usuários conectados
Existem 8 usuários conectados

Como eu disse antes, as aspas protegem tudo que esta dentro dos seus limites, da interpretação do Shell. Como para o Shell basta um espaço em branco como separador, o monte de espaços será trocado por um único após a retirada das aspas.

Antes de falar sobre o uso dos parênteses deixa eu mandar uma rapidinha sobre o uso de ponto-e-vírgula (;). Quando estiver no Shell, você deve sempre dar um comando em cada linha. Para agrupar comandos em uma mesma linha teremos que separá-los por ponto-e-vírgula. Então:

$ pwd ; cd /etc; pwd; cd -; pwd
/home/meudir
/etc/
/home/meudir

Neste exemplo, listei o nome do diretório corrente com o comando pwd, mudei para o diretório /etc, novamente listei o nome do diretório e finalmente voltei para o diretório onde estava anteriormente (cd -), listando seu nome. Repare que coloquei o ponto-e-vírgula (;) de todas as formas possíveis para mostrar que não importa se existe espaços em branco antes ou após este caractere.

Finalmente vamos ver o caso dos parênteses. Veja só o caso a seguir, bem parecido com o exemplo anterior:

$ (pwd ; cd /etc ; pwd;)
/home/meudir
/etc/

$ pwd
/home/meudir

– Quequeiiisso minha gente? Eu estava no /home/meudir, mudei para o /etc, constatei que estava neste diretório com o pwd seguinte e quando o agrupamento de comandos terminou, eu vi que continuava no /home/meudir, como se eu nunca houvesse saído de lá!

– Ih! Será que é tem coisa de mágico aí?

– Tá me estranhando, rapaz? Não é nada disso! O interessante do uso de parênteses é que ele invoca um novo Shell para executar os comandos que estão no seu interior. Desta forma, realmente fomos para o diretório /etc, porém quando todos os comandos dentro dos parênteses foram executados, o novo Shell que estava no diretório /etc morreu e voltamos ao Shell anterior cujo diretório corrente era /home/meudir. Faça outros testes usando cd, e ls para você firmar o conceito.

Agora que já conhecemos estes conceitos veja só este exemplo a seguir:

$ mail suporte << FIM
> Ola suporte, hoje as ‘date “+%H:%M”‘
> ocorreu novamente aquele problema
> que eu havia reportado por
> telefone. Conforme seu pedido
> ai vai uma listagem dos arquivos
> do diretorio:
> ‘ls —l‘
> Abracos a todos.
> FIM

Finalmente agora temos conhecimento para mostrar o que havíamos conversado sobre here document. Os comandos entre crases (`) serão priorizados e portanto o Shell os executará antes da instrução mail. Quando o suporte receber o e-mail, verá que os comandos date e ls foram executados imediatamente antes do comando mail, recebendo então uma fotografia do ambiente no momento em que a correspondência foi enviada.

O prompt primário default do Shell, como vimos, é o cifrão ($), porém o Shell usa o conceito de prompt secundário, ou de continuação de comando, que é enviado para a tela quando há uma quebra de linha e a instrução não terminou. Esse prompt, é representado por um sinal de maior (>), que vemos precedendo a partir da 2ª linha do exemplo.

Para finalizar e bagunçar tudo, devo dizer que existe uma construção mais moderna que vem sendo utilizada como forma de priorização de execução de comandos, tal qual as crases (`). São as construções do tipo $(cmd), onde cmd é um (ou vários) comando que será(ão) executado(s) com prioridade em seu contexto.

Assim sendo, o uso de crases (`) ou construções do tipo $(cmd) servem para o mesmo fim, porém para quem trabalha com sistemas operacionais de diversos fornecedores (multiplataforma), aconselho o uso das crases, já que o $(cmd) não foi portado para todos os sabores de Shell. Aqui dentro do Botequim, usarei ambas as formas, indistintamente.

Vejamos novamente o exemplo dado para as crases sob esta nova ótica:

$ echo Existem $(who | wc -l) usuários conectados
Existem 8 usuários conectados

Veja só este caso:

$ Arqs=ls
$ echo $Arqs
ls

Neste exemplo eu fiz uma atribuição (=) e executei uma instrução. O que eu queria era que a variável $Arqs, recebesse a saída do comando ls. Como as instruções de um script são interpretadas de cima para baixo e da esquerda para a direita, a atribuição foi feita antes da execução do ls. Para fazer o que desejamos é necessário que eu priorize a execução deste comando em detrimento da atribuição e isto pode ser feito de qualquer uma das maneiras a seguir:

$ Arqs=`ls`

ou:

$ Arqs=$(ls)

Para encerrar este assunto vamos ver só mais um exemplo. Digamos que eu queira colocar dentro da variável $Arqs a listagem longa (ls -l) de todos os arquivos começados por arq e seguidos de um único caractere (?). Eu deveria fazer:

$ Arqs=$(ls -l arq?)

ou:

$ Arqs=`ls -l arq?`

Mas veja:

$ echo $Arqs
-rw-r–r–
1 jneves jneves 19 May 24 19:41 arq1 -rw-r–r– 1 jneves jneves 23 May
24 19:43 arq2 -rw-r–r– 1 jneves jneves 1866 Jan 22 2003 arql

– Pô, saiu tudo embolado!

– Pois é cara, como eu já te disse, se você deixar o Shell “ver” os espaços em branco, sempre que houver diversos espaços juntos, eles serão trocados por apenas um. Para que a listagem saia bonitinha, é necessário proteger a variável da interpretação do Shell, assim:

$ echo “$Arqs”
-rw-r–r– 1 jneves jneves 19 May 24 19:41 arq1
-rw-r–r– 1 jneves jneves 23 May 24 19:43 arq2
-rw-r–r– 1 jneves jneves 1866 Jan 22 2003 arql

– Olhe, amigo, vá treinando esses exemplos, porque, quando nos encontrarmos novamente, vou lhe explicar uma série de instruções típicas de programação Shell. Tchau! Ahh! Só mais uma coisinha que eu ia esquecendo de lhe dizer. Em Shell, o “jogo da velha” (#) é usado quando desejamos fazer um comentário.

$ exit # pede a conta ao garcon frown

Vou aproveitar também para mandar o meu jabá: diga para os amigos que quem estiver afim de fazer um curso porreta de programação em Shell que mande um e-mail para a nossa gerencia de treinamento para informar-se.

Qualquer dúvida ou falta de companhia para um chope ou até para falar mal dos políticos é só mandar um e-mail para mim.

Valeu!

Read Full Post »


– E aê amigo, te dei a maior moleza, né? Um exerciciozinho muito simples…- É mais nos testes que eu fiz, e de acordo com o que você ensinou sobre substituição de parâmetros, achei que deveria fazer outras alterações nas funções que desenvolvemos para torná-las de uso geral como você me disse que todas as funções deveriam ser, quer ver?- Claro né mané, se te pedi para fazer é porque estou afim de te ver aprender, mas peraí, dá um tempo!- Chico! Manda dois, um sem colarinho!- Vai, mostra aí o que você fez.- Bem, além do que você pediu, eu reparei que o programa que chamava a função, teria de ter previamente definidas a linha em que seria dada a mensagem e a quantidade de colunas. O que fiz foi incluir duas linhas – nas quais empreguei substituição de parâmetros – que caso uma destas variáveis não fosse informada, a própria função atribuiria. A linha de mensagem seria três linhas acima do fim da tela e o total de colunas seria obtido pelo comando tput cols. Veja como ficou:

$ cat pergunta.func
# A funcao recebe 3 parametros na seguinte ordem:
# $1 – Mensagem a ser dada na tela
# $2 – Valor a ser aceito com resposta default
# $3 – O outro valor aceito
# Supondo que $1=Aceita?, $2=s e $3=n, a linha
# abaixo colocaria em Msg o valor “Aceita? (S/n)”
TotCols=${TotCols:-$(tput cols)} # Se nao estava definido, agora esta
LinhaMesg=${LinhaMesg:-$(($(tput lines)-3))} # Idem
Msg=”$1 (`echo $2 | tr a-z A-Z`/`echo $3 | tr A-Z a-z`)”
TamMsg=${#Msg}
Col=$(((TotCols – TamMsg) / 2)) # Para centrar Msg na linha
tput cup $LinhaMesg $Col
read -n1 -p “$Msg ” SN
SN=${SN:-$2} # Se vazia coloca default em SN
SN=$(echo $SN | tr A-Z a-z) # A saida de SN serah em minuscula
tput cup $LinhaMesg $Col; tput el # Apaga msg da tela

– Gostei, você já se antecipou ao que eu ia pedir. Só pra gente encerrar este papo de substituição de parâmetros, repare que a legibilidade está horrorível, mas a performance, isto é, velocidade de execução, está ótima. Como funções são coisas muito pessoais, já que cada um usa as suas, e quase não dão manutenção, eu sempre opto pela performance.

– Hoje vamos sair daquela chatura que foi o nosso último papo e vamos voltar à lógica saindo da decoreba, mas volto a te lembrar, tudo que eu te mostrei da outra vez aqui no Boteco do Chico é válido e quebra um galhão, guarde aqueles guardanapos que rabiscamos que, mais cedo ou mais tarde, vão te ser muito úteis.

O comando eval

– Vou te dar um problema que eu duvido que você resolva:

$ var1=3
$ var2=var1

– Te dei estas duas variáveis, e quero que você me diga como eu posso, só me referindo a $var2, listar o valor de $var1 (3).

– A isso é mole, é só fazer:

    echo $`echo $var2`

– Repare que eu coloquei o echo $var2 entre crases (`), que desta forma terá prioridade de execução e resultará em var1, montando echo$var1 que produzirá 3

– A é? Então execute para ver se está correto.

$ echo $`echo $var2`
$var1

– Ué! Que foi que houve? O meu raciocínio me parecia bastante lógico…

– O seu raciocínio realmente foi lógico, o problema é que você esqueceu de uma das primeiras coisas que te falei aqui no Boteco e vou repetir. O Shell usa a seguinte ordem para resolver uma linha de comandos:

  • Resolve os redirecionamentos;
  • Substitui as variáveis pelos seus valores;
  • Resolve e substitui os meta caracteres;
  • Passa a linha já toda esmiuçada para execução.

Desta forma, quando chegou na fase de resolução de variáveis, que como eu disse é anterior à execução, a única variável existente era $var2 e por isso a tua solução produziu como saída $var1. O comando echo identificou isso como uma cadeia e não como uma variável.

Problemas deste tipo são relativamente freqüentes e seriam insolúveis caso não existisse a instrução eval, cuja sintaxe é:

    eval cmd

Onde cmd é uma linha de comando qualquer que você poderia inclusive executar direto no prompt do terminal. Quando você põe o eval na frente, no entanto, o que ocorre é que o Shell trata cmd como se seus dados fossem parâmetros do eval e em seguida o eval executa a linha recebida, submetendo-a ao Shell, dando então na prática duas passadas em cmd.

Desta forma se executássemos o comando que você propôs colocando o eval à sua frente, teríamos a saída esperada, veja:

$ eval echo $`echo $var2`
3

Este exemplo também poderia ter sido feito da seguinte maneira:

$ eval echo $$var2
3

Na primeira passada a contrabarra () seria retirada e $var2 seria resolvido produzindo var1, para a segunda passada teria sobrado echo $var1, que produziria o resultado esperado.

Agora vou colocar um comando dentro de var2:

$ var2=ls

Vou executar:

$ $var2
10porpag1.sh alo2.sh listamusica logaute.sh
10porpag2.sh confuso listartista mandamsg.func
10porpag3.sh contpal.sh listartista3 monbg.sh
alo1.sh incusu logado

Agora vamos colocar em var2 o seguinte: ls $var1; e em var1 vamos colocar l*, vejamos:

$ var2=’ls $var1′
$ var1=’l*’
$ $var2
ls: $var1: No such file or directory

$ eval $var2
listamusica listartista listartista3 logado logaute.sh

Novamente, no tempo de substituição das variáveis, $var1 ainda não havia se apresentado ao Shell para ser resolvida, desta forma só nos resta executar o comando eval para dar as duas passadas necessárias.

Uma vez um colega de uma excelente lista sobre Shell Script, colocou uma dúvida: queria fazer um menu que numerasse e listasse todos os arquivos com extensão .sh e quando o operador escolhesse uma opção, o programa correspondente seria executado. A minha proposta foi a seguinte:

$ cat fazmenu
#!/bin/bash
#
# Lista numerando os programas com extensão .sh no
# diretório corrente e executa o escolhido pelo operador
#
clear; i=1
printf “%11st%snn” Opção Programa
CASE=’case $opt in’
for arq in *.sh
do
printf “t%03dt%sn” $i $arq
CASE=”$CASE
“$(printf “%03d)t %s;;” $i $arq)
i=$((i+1))
done
CASE=”$CASE
*) . erro;;
esac”
read -n3 -p “Informe a opção desejada: ” opt
echo
eval “$CASE”

Parece complicado porque usei muito printf para formatação da tela, mas é bastante simples, vamos entendê-lo: o primeiro printf foi colocado para fazer o cabeçalho e logo em seguida comecei a montar dinamicamente a variável $CASE, na qual ao final será feito um eval para execução do programa escolhido. Repare no entanto que dentro do loop do for existem dois printf: o primeiro serve para formatar a tela e o segundo para montar o case (se antes do comando read você colocar uma linha echo "$CASE", verá que o comando case montado dentro da variável está todo indentado. Frescura, né? :). Na saída do for, foi adicionada uma linha à variável $CASE, para no caso de se fazer uma opção inválida, ser executada uma função externa para dar mensagens de erro.

Vamos executá-lo para ver a saída gerada:

$ fazmenu.sh
Opcao Programa

001 10porpag1.sh
002 10porpag2.sh
003 10porpag3.sh
004 alo1.sh
005 alo2.sh
006 contpal.sh
007 fazmenu.sh
008 logaute.sh
009 monbg.sh
010 readpipe.sh
011 redirread.sh
Informe a opção desejada:

Neste programa seria interessante darmos uma opção de término, e para isso seria necessário a inclusão de uma linha após o loop de montagem da tela e alterarmos a linha na qual fazemos a atribuição final do valor da variável $CASE. Vejamos como ele ficaria:

$ cat fazmenu
#!/bin/bash
#
# Lista numerando os programas com extensão .sh no
# diretório corrente e executa o escolhido pelo operador
#
clear; i=1
printf “%11st%snn” Opção Programa
CASE=’case $opt in’
for arq in *.sh
do
printf “t%03dt%sn” $i $arq
CASE=”$CASE
“$(printf “%03d)t %s;;” $i $arq)
i=$((i+1))
done
printf “t%dt%snn” 999 “Fim do programa” # Linha incluida
CASE=”$CASE
999) exit;; # Linha alterada
*) ./erro;;
esac”
read -n3 -p “Informe a opção desejada: ” opt
echo
eval “$CASE”

Sinais de Processos

Existe no Linux uma coisa chamada sinal (signal). Existem diversos sinais que podem ser mandados para (ou gerados por) processos em execução. Vamos de agora em diante dar uma olhadinha nos sinais mandados para os processos e mais à frente vamos dar uma passada rápida pelos sinais gerados por processos.

Sinais assassinos

Para mandar um sinal a um processo, usamos normalmente o comando kill, cuja sintaxe é:

    kill -sig PID

Onde PID é o identificador do processo (Process IDentification ou Process ID). Além do comando kill, algumas seqüências de teclas também podem gerar sig. A tabela a seguir mostra os sinais mais importantes para monitorarmos:

Sinais Mais Importantes
Sinal Gerado por:
0 EXIT Fim normal do programa
1 SIGHUP Quando recebe um kill -HUP
2 SIGINT Interrupção pelo teclado (<CTRL+C>)
3 SIGQUIT Interrupção pelo teclado (<CTRL+>)
15 SIGTERM Quando recebe um kill ou kill -TERM

Além destes sinais, existe o famigerado -9 ou SIGKILL que, para o processo que o está recebendo, equivale a meter o dedo no botão de desliga do computador o que seria altamente indesejável já que muitos programas necessitam “limpar o meio de campo” ao seu término. Se o seu final ocorrer de forma prevista, ou seja se tiver um término normal, é muito fácil de fazer esta limpeza, porém se o seu programa tiver um fim brusco muita coisa pode ocorrer:

  • É possível que em um determinado espaço de tempo, o seu computador esteja cheio de arquivos de trabalho inúteis
  • Seu processador poderá ficar atolado de processos zombies e defuncts gerados por processos filhos que perderam os pais;
  • É necessário liberar sockets abertos para não deixar os clientes congelados;
  • Seus bancos de dados poderão ficar corrompidos porque sistemas gerenciadores de bancos de dados necessitam de um tempo para gravar seus buffers em disco (commit).

Enfim, existem mil razões para não usar um kill com o sinal -9 e para monitorar fins anormais de programas.

O trap não atrapalha

Para fazer a monitoração descrita acima existe o comando trap cuja sintaxe é:

    trap "cmd1; cmd2; cmdn" S1 S2 ... SN

ou

    trap 'cmd1; cmd2; cmdn' S1 S2 ... SN

Onde os comandos cmd1, cmd2, cmdn serão executados caso o programa receba os sinais S1 S2SN.

As aspas (“) ou os apóstrofos (‘) só são necessários caso o trap possua mais de um comando cmd associado. Cada um dos cmd pode ser também uma função interna, uma externa ou outro script.

Para entender o uso de aspas (“) e apóstrofos (‘) vamos recorrer a um exemplo que trata um fragmento de um script que faz um ftp para uma máquina remota ($RemoComp), na qual o usuário é $Fulano, sua senha é $Segredo e vai transmitir o arquivo contido em $Arq. Suponha ainda que estas quatro variáveis foram recebidas em uma rotina anterior de leitura e que este script é muito usado por diversas pessoas da instalação. Vejamos este trecho de código:

ftp -ivn $RemoComp << FimFTP >> /tmp/$$ 2>> /tmp/$$
    user $Fulano $Segredo
    binary
    get $Arq
FimFTP

Repare que, tanto as saídas do dos diálogos do ftp, como os erros encontrados, estão sendo redirecionados para /tmp/$$, o que é uma construção bastante normal para arquivos temporários usados em scripts com mais de um usuário, porque $$ é a variável que contém o número do processo (PID), que é único, e com este tipo de construção evita-se que dois ou mais usuários disputem a posse e os direitos sobre o arquivo.

Caso este ftp seja interrompido por um kill ou um <CTRL+C>, certamente deixará lixo no disco. É exatamente esta a forma como mais se usa o comando trap. Como isto é trecho de um script, devemos, logo no seu início, como um de seus primeiros comandos, fazer:

    trap "rm -f /tmp/$$ ; exit" 0 1 2 3 15

Desta forma, caso houvesse uma interrupção brusca (sinais 1, 2, 3 ou 15) antes do programa encerrar (no exit dentro do comando trap), ou um fim normal (sinal 0), o arquivo /tmp/$$ seria removido.

Caso na linha de comandos do trap não houvesse a instrução exit, ao final da execução desta linha o fluxo do programa retornaria ao ponto em que estava quando recebeu o sinal que originou a execução deste trap.

Este trap poderia ser subdividido, ficando da seguinte forma:

    trap "rm -f /tmp/$$" 0
    trap "exit" 1 2 3 15

Assim ao receber um dos sinais o programa terminaria, e ao terminar, geraria um sinal 0, que removeria o arquivo. Caso seu fim seja normal, o sinal também será gerado e o rm será executado.

Note também que o Shell pesquisa a linha de comandos uma vez quanto o trap é interpretado (e é por isso que é usual colocá-lo no início do programa) e novamente quando um dos sinais listados é recebido. Então, no último exemplo, o valor de $$ será substituído no momento que o comando trap foi lido da primeira vez, já que as aspas (") não protegem o cifrão ($) da interpretação do Shell.

Se você desejasse que a substituição fosse realizada somente quando recebesse o sinal, o comando deveria ser colocado entre apóstrofos ('). Assim, na primeira interpretação do trap, o Shell não veria o cifrão ($), porém os apóstrofos (') seriam removidos e finalmente o Shell poderia substituir o valor da variável. Neste caso, a linha ficaria da seguinte maneira:

    trap 'rm -f /tmp/$$ ; exit' 0 1 2 3 15

Suponha dois casos: você tem dois scripts que chamaremos de script1, cuja primeira linha será um trap e script2, sendo este último colocado em execução pelo primeiro, e por serem dois processos, terão dois PID distintos.

  • 1º Caso: O ftp encontra-se em script1
    Neste caso, o argumento do comando trap deveria vir entre aspas (") porque caso ocorresse uma interrupção (<CTRL+C> ou <CTRL+>) no script2, a linha só seria interpretada neste momento e o PID do script2 seria diferente do encontrado em /tmp/$$ (não esqueça que $$ é a variável que contém o PID do processo ativo);
  • 2º Caso: O ftp acima encontra-se em script2
    Neste caso, o argumento do comando trap deveria estar entre apóstrofos ('), pois caso a interrupção se desse durante a execução de script1, o arquivo não teria sido criado, caso ocorresse durante a execução de script2, o valor de $$ seria o PID deste processo, que coincidiria com o de /tmp/$$.

O comando trap, quando executado sem argumentos, lista os sinais que estão sendo monitorados no ambiente, bem como a linha de comando que será executada quando tais sinais forem recebidos.

Se a linha de comandos do trap for nula (vazia), isto significa que os sinais especificados devem ser ignorados quando recebidos. Por exemplo, o comando:

    trap "" 2

Especifica que o sinal de interrupção (<CTRL+C>) deve ser ignorado. No caso citado, quando não se deseja que sua execução seja interrompida. No último exemplo note que o primeiro argumento deve ser especificado para que o sinal seja ignorado, e não é equivalente a escrever o seguinte, cuja finalidade é retornar o sinal 2 ao seu estado padrão (default):

    trap 2

Se você ignora um sinal, todos os Subshells irão ignorar este sinal. Portanto, se você especifica qual ação deve ser tomada quando receber um sinal, então todos os Subshells irão também tomar a ação quando receberem este sinal, ou seja, os sinais são automaticamente exportados. Para o sinal que temos mostrado (sinal 2), isto significa que os Subshells serão encerrados.

Suponha que você execute o comando:

    trap "" 2

e então execute um Subshell, que tornará a executar outro script como um Subshell. Se for gerado um sinal de interrupção, este não terá efeito nem sobre o Shell principal nem sobre os Subshell por ele chamados, já que todos eles ignorarão o sinal.

Outra forma de restaurar um sinal ao seu default é fazendo:

    trap - sinal

Em korn shell (ksh) não existe a opção -s do comando read para ler uma senha. O que costumamos fazer é usar o comando stty com a opção -echo que inibe a escrita na tela até que se encontre um stty echo para restaurar esta escrita. Então, se estivéssemos usando o interpretador ksh, a leitura da senha teria que ser feita da seguinte forma:

    echo -n "Senha: "
    stty -echo
    read Senha
    stty echo

O problema neste tipo de construção é que caso o operador não soubesse a senha, ele provavelmente daria um <CTRL+C> ou um <CTRL+> durante a instrução read para descontinuar o programa e, caso ele agisse desta forma, o que quer que ele escrevesse, não apareceria na tela do seu terminal. Para evitar que isso aconteça, o melhor a fazer é:

    echo -n "Senha: "
    trap "stty echo
          exit" 2 3
    stty -echo
    read Senha
    stty echo
    trap 2 3

Para terminar este assunto, abra uma console gráfica e escreva no prompt de comando o seguinte:

$ trap “echo Mudou o tamanho da janela” 28

Em seguida, pegue o mouse (arghh!!) e arraste-o de forma a variar o tamanho da janela corrente. Surpreso? É o Shell orientado a eventos… smile

Mais unzinho porque não pude resistir. Agora escreva assim:

$ trap “echo já era” 17

Em seguida faça:

$ sleep 3 &

Você acabou de criar um subshell que irá dormir durante três segundos em background. Ao fim deste tempo, você receberá a mensagem já era, porque o sinal 17 é emitido a cada vez que um subshell termina a sua execução.

Para devolver estes sinais aos seus defaults, faça:

$ trap 17 28

Ou

$ trap – 17 28

Acabamos de ver mais dois sinais que não são tão importante como os que vimos anteriormente, mas vou registrá-los na tabela a seguir:

Sinais Não Muito Importantes
Sinal Gerado por:
17 SIGCHLD Fim de um processo filho
28 SIGWINCH Mudança no tamanho da janela gráfica

Muito legal este comando, né? Se você descobrir algum caso bacana de uso de sinais, por favor me informe por e-mail porque é muito rara a literatura sobre o assunto.

Comando getopts

O comando getopts recupera as opções e seus argumentos de uma lista de parâmetros de acordo com a sintaxe POSIX.2, isto é, letras (ou números) após um sinal de menos (-) seguidas ou não de um argumento; no caso de somente letras (ou números) elas podem ser agrupadas. Você deve usar este comando para “fatiar” opções e argumento passados para o seu script.

Sintaxe:

    getopts cadeiadeopcoes nome

A cadeiadeopcoes deve explicitar uma cadeia de caracteres com todas as opções reconhecidas pelo script, assim se ele reconhece as opções -a -b e -c, cadeiadeopcoes deve ser abc. Se você deseja que uma opção seja seguida por um argumento, ponha dois-pontos (:) depois da letra, como em a:bc. Isto diz ao getopts que a opção -a tem a forma:

    -a argumento

Normalmente um ou mais espaços em branco separam o parâmetro da opção; no entanto, getopts também manipula parâmetros que vêm colados à opção como em:

    -aargumento

cadeiadeopcoes não pode conter interrogação (?).

O nome constante da linha de sintaxe acima, define uma variável que cada vez que o comando getopts for executado, receberá a próxima opção dos parâmetros posicionais e a colocará na variável nome.

getopts coloca uma interrogação (?) na variável definida em nome se achar uma opção não definida em cadeiadeopcoes ou se não achar o argumento esperado para uma determinada opção.

Como já sabemos, cada opção passada por uma linha de comandos tem um índice numérico, assim, a primeira opção estará contida em $1, a segunda em $2, e assim por diante. Quando o getopts obtém uma opção, ele armazena o índice do próximo parâmetro a ser processado na variável OPTIND.

Quando uma opção tem um argumento associado (indicado pelo : na cadeiadeopcoes), getopts armazena o argumento na variável OPTARG. Se uma opção não possui argumento ou o argumento esperado não foi encontrado, a variável OPTARG será “matada” (unset).

O comando encerra sua execução quando:

  • Encontra um parâmetro que não começa por menos (-);
  • O parâmetro especial -- marca o fim das opções;
  • Quando encontra um erro (por exemplo, uma opção não reconhecida).

O exemplo abaixo é meramente didático, servindo para mostrar, em um pequeno fragmento de código o uso pleno do comando.

$ cat getoptst.sh
#!/bin/sh

# Execute assim:
#
# getoptst.sh -h -Pimpressora arq1 arq2
#
# e note que as informacoes de todas as opcoes sao exibidas
#
# A cadeia ‘P:h’ diz que a opcao -P eh uma opcao complexa
# e requer um argumento, e que h eh uma opcao simples que nao requer
# argumentos.

while getopts ‘P:h’ OPT_LETRA
do
echo “getopts fez a variavel OPT_LETRA igual a ‘$OPT_LETRA'”
echo ” OPTARG eh ‘$OPTARG'”
done
used_up=`expr $OPTIND – 1`
echo “Dispensando os primeiros $OPTIND-1 = $used_up argumentos”
shift $used_up
echo “O que sobrou da linha de comandos foi ‘$*'”

Para entendê-lo melhor, vamos executá-lo como está sugerido em seu cabeçalho:

$ getoptst.sh -h -Pimpressora arq1 arq2
getopts fez a variavel OPT_LETRA igual a ‘h’
OPTARG eh ”
getopts fez a variavel OPT_LETRA igual a ‘P’
OPTARG eh ‘impressora’
Dispensando os primeiros $OPTIND-1 = 2 argumentos
O que sobrou da linha de comandos foi ‘arq1 arq2’

Desta forma, sem ter muito trabalho, separei todas as opções com seus respectivos argumentos, deixando somente os parâmetros que foram passados pelo operador para posterior tratamento.

Repare que se tivéssemos escrito a linha de comando com o argumento (impressora) separado da opção (-P), o resultado seria exatamente o mesmo, exceto pelo $OPTIND, já que neste caso ele identifica um conjunto de três opções/argumentos e no anterior somente dois. Veja só:

$ getoptst.sh -h -P impressora arq1 arq2
getopts fez a variavel OPT_LETRA igual a ‘h’
OPTARG eh ”
getopts fez a variavel OPT_LETRA igual a ‘P’
OPTARG eh ‘impressora’
Dispensando os primeiros $OPTIND-1 = 3 argumentos
O que sobrou da linha de comandos foi ‘arq1 arq2’

Repare, no exemplo a seguir, que se passarmos uma opção inválida, a variável $OPT_LETRA receberá um ponto-de-interrogação (?) e a $OPTARG será “apagada” (unset).

$ getoptst.sh -f -Pimpressora arq1 arq2 # A opção �f não é valida
./getoptst.sh: illegal option — f
getopts fez a variavel OPT_LETRA igual a ‘?’
OPTARG eh ”
getopts fez a variavel OPT_LETRA igual a ‘P’
OPTARG eh ‘impressora’
Dispensando os primeiros $OPTIND-1 = 2 argumentos
O que sobrou da linha de comandos foi ‘arq1 arq2’

– Me diz uma coisa: você não poderia ter usado um case para evitar o getopts?

– Poderia sim, mas para que? Os comandos estão aí para serem usados… O exemplo dado foi didático, mas imagine um programa que aceitasse muitas opções e seus parâmetros poderiam ou não estar colados às opções, suas opções também poderiam ou não estar coladas, ia ser um case infernal e com getopts é só seguir os passos acima.

– É… Vendo desta forma acho que você tem razão. É porque eu já estou meio cansado com tanta informação nova na minha cabeça. Vamos tomar a saideira ou você ainda quer explicar alguma particularidade do Shell?

– Nem um nem outro, eu também já cansei mas hoje não vou tomar a saideira porque estou indo dar aula na UniRIO, que é a primeira universidade federal que está preparando no uso de Software Livre, seus alunos do curso de graduação em informática.

Mas antes vou te deixar um problema para te encucar: quando você varia o tamanho de uma tela, no seu centro não aparece dinamicamente em vídeo reverso a quantidade de linhas e colunas? Então! Eu quero que você reproduza isso usando a linguagem Shell.

– Chico, traz rapidinho a minha conta! Vou contar até um e se você não trouxer eu me mando!

Vou aproveitar também para mandar o meu jabá: diga para os amigos que quem estiver afim de fazer um curso porreta de programação em Shell que mande um e-mail para a nossa gerencia de treinamento para informar-se.

Qualquer dúvida ou falta de companhia para um chope ou até para falar mal dos políticos é só mandar um e-mail para mim.

Valeu!

Read Full Post »